
Voltage Sensor Series

SVL1, SVL2, SVL3, SVL4

Product description

Features

- Using the principle of electrical isolation, the measured high-voltage signal is converted into a linear low-voltage signal, which is convenient for measurement.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- PCB soldering of terminal blocks, high reliability.
- Standard rail (35mm) installation, easy to disassemble.
- Strong anti-interference performance and high accuracy (0.5%).
- Comply with UL94-V0 flame retardant rating.

Applications:

Widely used in various industrial voltage online isolation detection systems.

Implementation standards

- GB/T 7665-2005
- JB/T 25480-2010
- SJ 20792-2000
- GB/T 13850-1995

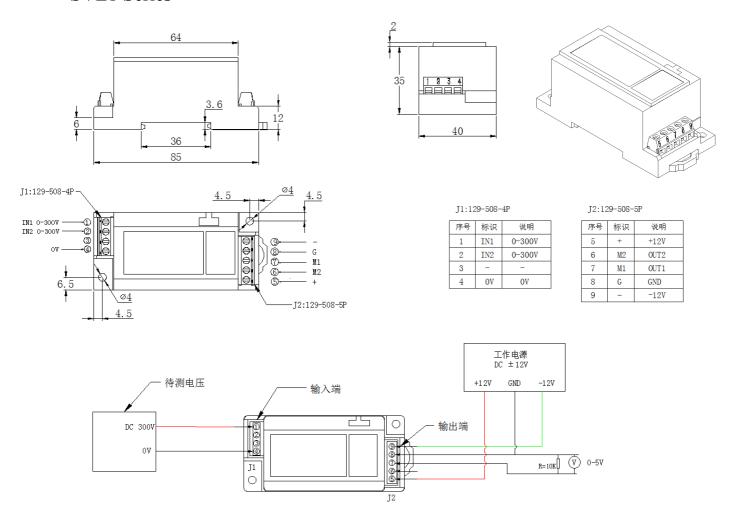
Certifications:

SVL1 Technical Parameters

Model	SVL1-					
Parameters (25°C)	75V	100V	300V	500V	1000V	
Primary input Voltage V _{PN} (DC)	75V	100V	300V	500V	1000V	
Primary voltage Max.V _{PM}	+90V	+120V	+360V	+600V	+1200V	
Output Voltage V_{out} $\textcircled{a}\pm I_{PN}$, R_L =10 $K\Omega$	DC 0∼5V					

Electrical Data

Item	Min.	Max.	Typical	Unit
Input power supply voltage range Vc (±5%) (Remark 1)	±11	±12	±18	V _{DC}
Current consumption Ic		<60mA		mA
Output voltage Vout @ I_{PN} , $R_L=10K\Omega$, $T_A=25^{\circ}C$	V_{oU}	$V_{OUT} = 5.000 * \frac{V_P}{V_{PN}} + V_{OE}$		V
Load Resistance R _L	10	-	-	ΚΩ
Accuracy X @I _{PN} , T _A = 25 °C	-	±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%I _{PN}
Offset voltage V _{OE} @T _A = 25 °C	-	±25	-	mV
Temperature coefficient of offset voltage TCV _{OE}	-	±0.5	±1	mV/℃
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/°C
Response time $t_D @ 0 \rightarrow I_{PN}$	-	300	-	mS
Operating ambient temperature range T_A	-40	25	85	$^{\circ}$ C
Storage ambient temperature range T _s	-40	25	85	$^{\circ}$ C
Insulation withstand voltage VD@50Hz, 60s, 0.1mA	-	3000	-	V _{AC}
Weight m	-	70	-	g


Remark:

If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.

Shenzhen SoCan Technologies Co.,Ltd SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

Dimensions (in:mm)

SVL1 Series

Concentrate:

- 1. Size error: ±1mm;
- 2. If the rated voltage \geq 500V, the input/output is a single channel detection.
- 3. The product installation and use environment should be free of conductive dust and corrosion.
- 4. When wiring, please pay attention to the exposed conductive part of the terminal block, and the input, output and power supply must be connected correctly.

Do not make mistakes or reverse connections, incorrect wiring may cause damage to the sensor.

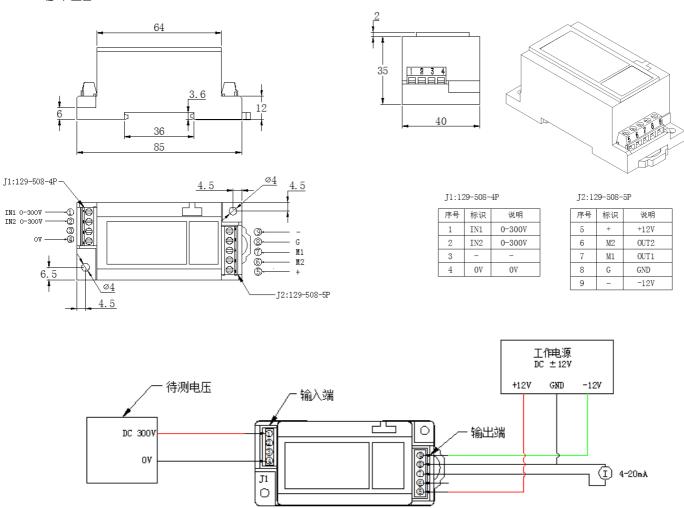
5. Severe vibration or high temperature may also cause damage to the product, please pay attention to the occasion of use.

SVL2 Technical Parameters

Model	SVL2-					
Parameters (25°C)	75V	100V	300V	500V	1000V	
Primary input Voltage V _{PN} (DC)	75V	100V	300V	500V	1000V	
$\begin{array}{ll} Primary & voltage \\ Max.V_{PM} & \end{array}$	+90V	+120V	+360V	+600V	+1200V	
Output Current Signal $@\pm I_{PN}$, $R_L=10K\Omega$	DC 4~20mA					

Electrical Data

Item	Min.	Max.	Typical	Unit
Input power supply voltage range Vc (±5%) (Remark 1)	±11	±12	±18	V _{DC}
Current consumption Ic	<601	mA +Current ou	tput I _S	mA
Output voltage Vout @ I_{PN} , $R_L=10K\Omega$, $T_A=25^{\circ}C$	I_{OUI}	$I_{OUT} = 4 + 16 * \frac{V_P}{V_{PN}} + I_{OE}$		V
Load Resistance R _L	0	-	500	Ω
Accuracy X @I _{PN} , T _A = 25°C	-	±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%I _{PN}
Offset current I _{OE} @T _A = 25 °C	-	±0.125	-	mA
Temperature coefficient of offset voltage TCV _{OE}	-	±0.0016	±0.0032	mA/°C
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/°C
Response time $t_D @ 0 \rightarrow I_{PN}$	-	300	-	mS
Operating ambient temperature range T_A	-40	25	85	$^{\circ}$
Storage ambient temperature range T _s	-40	25	85	$^{\circ}\mathbb{C}$
Insulation withstand voltage VD@50Hz, 60s, 0.1mA	-	3000	-	V _{AC}
Weight m	-	70	-	g


Remark:

If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.

Shenzhen SoCan Technologies Co.,Ltd

Dimension (in mm):

SVL2

Concentrate:

- 1. Size error: ±1mm;
- 2. If the rated voltage \geq 500V, the input/output is a single channel detection.
- 3. The product installation and use environment should be free of conductive dust and corrosion.
- 4. When wiring, please pay attention to the exposed conductive part of the terminal block, and the input, output and power supply must be connected correctly,

Do not make mistakes or reverse connections, incorrect wiring may cause damage to the sensor.

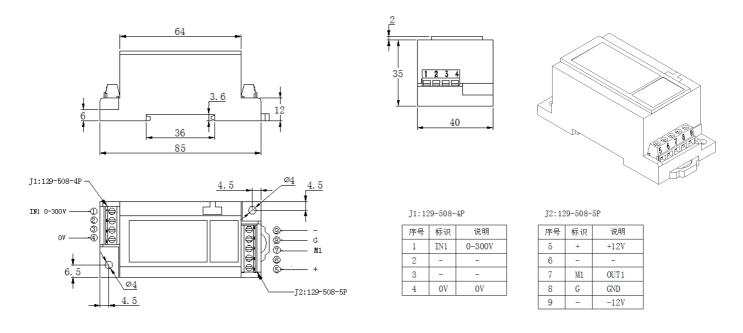
5. Severe vibration or high temperature may also cause product damage, please pay attention to the occasion of use.

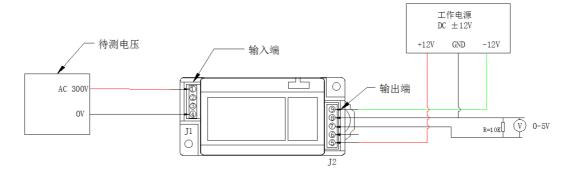
SVL3 Technical Parameters

Model	SVL3-					
Parameters (25°C)	75V	100V	300V	500V	1000V	
Primary input Voltage $V_{PN}(AC)$	75V	100V	300V	500V	1000V	
Primary voltage $Max.V_{PM (AC)}$	+90V	+120V	+360V	+600V	+1200V	
Output Voltage V_{out} $\textcircled{a}\pm I_{PN}$, R_L =10 $K\Omega$	DC 0∼5V					

Electrical Data

Item	Min.	Max.	Typical	Unit
Input power supply voltage range Vc (±5%) (Remark 1)	±11	±12	±18	V _{DC}
Current consumption Ic		<60mA		mA
Output voltage Vout @ I_{PN} , $R_L=10K\Omega$, $T_A=25^{\circ}C$	V_{OU}	$V_{OUT} = 5.000 * \frac{V_P}{V_{PN}} + V_{OE}$		V
Load Resistance R _L	10	-	-	ΚΩ
Accuracy X @I _{PN} , T _A = 25 °C	-	±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%I _{PN}
Offset voltage V _{OE} @T _A = 25 °C	-	±25	-	mV
Temperature coefficient of offset voltage TCV _{OE}	-	±0.5	±1	mV/°C
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/℃
Response time $t_D @ 0 \rightarrow I_{PN}$	-	300	-	mS
Operating ambient temperature range T_A	-40	25	85	$^{\circ}$
Storage ambient temperature range T _s	-40	25	85	$^{\circ}\!\mathbb{C}$
Insulation withstand voltage VD@50Hz, 60s, 0.1mA	-	3000	-	V_{AC}
Weight m	-	70	-	g


Remark:


If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.

Shenzhen SoCan Technologies Co.,Ltd SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

Dimension (in mm):

SVL3 Series

Concentrate:

- 1. Size error: ± 1 mm;
- 2. AC testing, all are single-channel testing.
- 3. The product installation and use environment should be free of conductive dust and corrosion.
- 4. When wiring, please pay attention to the exposed conductive part of the terminal block, and the input, output and power supply must be connected correctly.

Do not make mistakes or reverse connections, incorrect wiring may cause damage to the sensor.

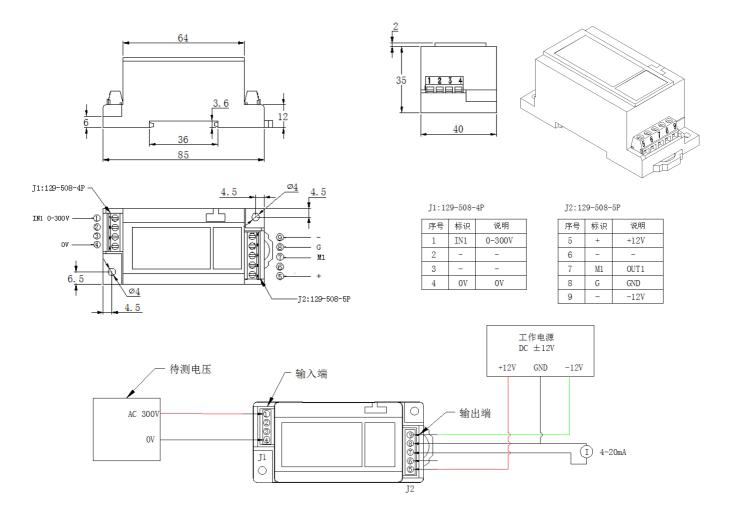
5. Severe vibration or high temperature may also cause damage to the product, please pay attention to the occasion of use.

SVL4 Technical Parameters

Model	SVL4-					
Parameters (25°C)	75V	100V	300V	500V	1000V	
Primary input Voltage V _{PN} (AC)	75V	100V	300V	500V	1000V	
Primary voltage $Max.V_{PM (AC)}$	+90V	+120V	+360V	+600V	+1200V	
Output Current V_{out} @ $\pm I_{PN}$, R_L = $10K\Omega$	DC 4~20mA					

Electrical Data

Item	Min.	Max.	Typical	Unit
Input power supply voltage range Vc (±5%) (Remark 1)	±11	±12	±18	V _{DC}
Current consumption Ic	<601	mA +Current ou	tput I _S	mA
Output voltage Vout @ I_{PN} , $R_L=10K\Omega$, $T_A=25^{\circ}C$	I_{OUI}	$I_{OUT} = 4 + 16 * \frac{V_P}{V_{PN}} + I_{OE}$		V
Load Resistance R _L	0	-	500	Ω
Accuracy X @I _{PN} , T _A = 25°C	-	±1	-	%
Linearity ϵ_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%I _{PN}
Offset current I _{OE} @T _A = 25 °C	-	±0.125	-	mA
Temperature coefficient of offset voltage TCV_{OE}	-	±0.0016	±0.0032	mA/°C
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/°C
Response time $t_D @ 0 \rightarrow I_{PN}$	-	300	-	mS
Operating ambient temperature range T_A	-40	25	85	$^{\circ}$ C
Storage ambient temperature range T _s	-40	25	85	$^{\circ}\mathbb{C}$
Insulation withstand voltage VD@50Hz, 60s, 0.1mA	-	3000	-	V_{AC}
Weight m	-	70	-	g


Remark:

If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.

Shenzhen SoCan Technologies Co.,Ltd SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

Dimension (in mm):

SVL4 series

Concentrate:

- 1. Size error: ± 1 mm;
- 2. AC testing, all are single-channel testing.
- 3. The product installation and use environment should be free of conductive dust and corrosion.
- 4. When wiring, please pay attention to the exposed conductive part of the terminal block, and the input, output and power supply must be connected correctly.

Do not make mistakes or reverse connections, incorrect wiring may cause damage to the sensor.

5. Severe vibration or high temperature may also cause damage to the product, please pay attention to the occasion of use.