DC Leakage Current Sensor

SCD₁₀

Product description

Features

- SCD series DC leakage current sensor, using the principle of magnetic modulation closed-loop, for isolated measurement of DC milliampere small current.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Temperature compensation circuit control, zero drift, accurate measurement.
- Perforated input, unplugging terminals, screw fastening flat mounting.
- Overall size(mm): $72(L)\times18(W)\times60(H)$; Aperture: 18mm
- Comply with UL94-V0 flame retardant rating.
- Switching input, RJ45 standard interface output

Applications

Widely used in emerging industries and fields such as electric power, industrial automation, solar photovoltaic, etc.

Implementation standards

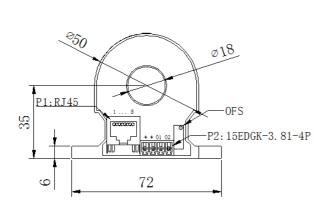
- GB/T 7665-2005
- JB/T 25480-2010
- JB/T 11205-2011
- SJ 20790-2000

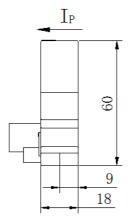
Certifications:

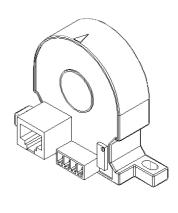
Technical Parameters

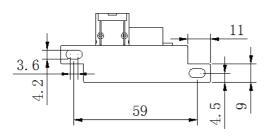
Model	SCD10-				
Parameters (25°C)	10mA	20mA	50mA	100mA	1A
$\begin{array}{ccc} \textbf{Primary} & \textbf{Current} & \textbf{I}_{PN} \\ \textbf{(DC)} & & \end{array}$	10mA	20mA	50mA	100mA	1A
Primary Current Max. Peak Value I _{PM} (DC)	±12mA	±24mA	±60mA	±120mA	±1.2A
Output voltage V_{out} @ $\pm I_{PN}$, $R_L=10K \Omega$			±5V±1%		

Electrical Data


Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1)	±11	±12	±18	V_{DC}
Current consumption Ic	-	±10	-	mA
Withstand resistance R _{INS} @500V DC	1000	-	-	ΜΩ
Output voltage Vout @ I_{PN} , $R_L=10K\Omega$, $T_A=25^{\circ}C$	4.950	5.000	5.050	V
Output internal resistance R _{OUT}	-	100	-	Ω
Load Resistance R _L	-	10	-	ΚΩ
Accuracy X @ I_{PN} , $T_A = 25^{\circ}C$	-	±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%
Offset voltage $V_{OE}@T_A=25^{\circ}C$	-	±50	-	mV
Temperature coefficient of offset voltage TCV_{OE}	-	±1	±2	mV/°C
Response Time $t_D @ 0 \rightarrow I_{PN}$	-	500	900	ms
Operating ambient temperature range T_A	-10	25	75	$^{\circ}$
Storage ambient temperature range T_s	-25	25	85	$^{\circ}$
Insulation withstand voltage VD@50Hz, 60s, 0.1mA		3000		V_{AC}
Weight m		70		g


Remark:


1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.


$$2.V_{OUT} = 5.05 * \frac{R_L}{100 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$

Dimensions (in mm)

P2:15EDGK-3.81-4P				
序号	标识	说明		
1	+	+15V		
2	+	+15V		
3	01	OUT1		
4	02	OUT2		

P1: RJ45					
序号	标识	说明			
1	+	+15V			
2	+	+15V			
3	01	OUT1			
4	02	OUT2			
5	M	Output			
6	-	-15V			
7	+	+15V			
8	G	OV			

Notes:

- 1. Size error: ± 0.5 mm;
- 2. Primary aperture: φ18mm;
- 3. Fastening hole: 4.2*3.6mm*2;
- 4. Switching output terminal: 15EDGK-3.81-4P, Signal output terminal: RJ45 network port;
- 5. The IP indication direction is the positive direction of the current, and the OFS is the zero adjustment;
- 6. Incorrect wiring may cause damage to the sensor;
- 7. The zero voltage of the sensor can be adjusted appropriately according to the needs of users;