Hall effect Open-loop current sensor

SCK1

Product description:

- Based on Hall effect measurement principle, open loop circuit mode.
- The isolation voltage between primary and secondary is greater than 3000VAC.
- Comply with UL94-V0 flame retardant rating.

Performance:

- Can measure DC, AC, pulse, and various irregular waveforms under isolated conditions.
- Wide measurement range, fast response speed, low zero drift, low temperature drift, high accuracy and good linearity.
- Dynamic performance (di/dt and response time) is optimal when the busbar is fully filled with primary perforations.
- Strong ability to resist external electromagnetic interference (BCI, EFT, CS, CE, ESD, dv/dt, etc.).

Application:

• It can be widely used in inverters, UPS, photovoltaic inverters, electric vehicle drives, high-frequency power supplies, inverter welding machines and other products.

Implementation standards:

- GB/T 7665-2005
- JB/T 7490-2007
- JB/T 25480-2010
- JB/T 9473-2020
- SJ 20792-2000

Certification:

www.szsocan.com

Technical Parameters

Model	SCK1-				
Parameters (25°C)	50A	100A	200A	300A	400A
Primary Current I _{PN}	50A	100A	200A	300A	400A
Primary Current Max. Peak Value I _{PM}	±1500A	±300A	±600A	±800A	±800A
Output voltage V_{out} @ $\pm I_{PN}$, R_L =10 $K\Omega$			±4V±1%		

Electrical Data

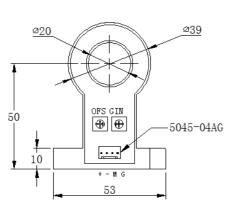
Item	Min.	Typical	Max.	Unit
Input power supply voltage range Vc (±5%) (Remark 1, Remark 2)	±11	±15	±18	V _{DC}
Current consumption Ic	-	±15	±20	mA
Withstand resistance R _{INS} @500V DC	1000	-	-	ΜΩ
Output voltage Vout @ I_{PN} , R_L =10K Ω , T_A =25°C	3.960	4.000	4.040	V
Output internal resistance R _{OUT}	-	102	-	Ω
Load Resistance R _L (Remark 3)	1	10	-	ΚΩ
Accuracy X @I _{PN} , T _A = 25 °C	-	±1	-	%
Linearity ε_L @ R_L =10K Ω , T_A = 25°C	-	±0.5	-	%I _{PN}
Offset voltage $V_{OE}@T_A=25^{\circ}C$	-	±10	±20	mV
Hysteresis voltage V _{OM} @ I _{PN} →0	-	±10	±20	mV
Temperature Coefficient of Offset Voltage TCV _{OE}	-	±0.5	±1	mV/°C
Output voltage temperature coefficient TCV _{out}	-	±0.05	±0.1	%/℃
Response time $t_D @ 0 \rightarrow I_{PN}$	-	3	5	us
Ambient operating temperature T _A	-40	25	125	$^{\circ}$
Ambient storage temperature T _s	-40	25	125	$^{\circ}$ C
Withstand voltage V _D @50Hz,60s,0.1mA		3000		V _{AC}
Weight m		60		g

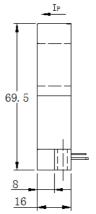
SoCan is committed to continuously improving product quality, and the company reserves the right to update its products.

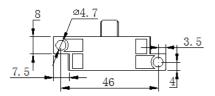
www.szsocan.com 2/4

Remark:

3.

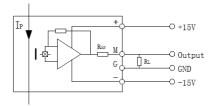

- 1. If VC is less than the minimum value, the measurement will be inaccurate. If VC is greater than the maximum value, it may cause permanent failure of the measuring device.
- 2. When $\pm 12V < VCC < \pm 15V$, will reduce the measurement range.

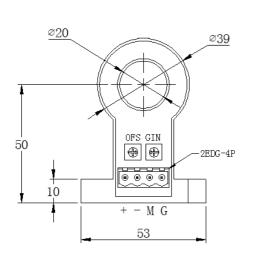

$$V_{OUT} = 4.04 * \frac{R_L}{102 + R_L} * \frac{I_P}{I_{PN}} + V_{OE}$$

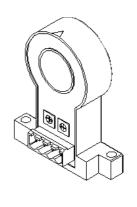

4. di/dt > 50A/uS

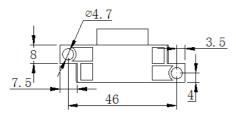
Dimensions (in mm)


SCK1 Dimension

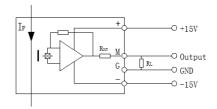







SCK1T Dimension(in mm)

www.szsocan.com



+ □.:	111111		
序号	标识	说明	
1	+	+15V	
2	-	-15V	
3	M	Output	
4	G	OV	

单位. mm

Notes:

1. Size error: ±1mm;

2. Primary aperture: φ20mm;

3. Fastening hole: φ4.5mm*2;

4. SCK1 output terminal: Molex 5045-04AG; SCK1T output terminal: 2EDGVC-5.08-4P

SCK1T mating plug: 2EDGK-5.08-4P;

- 5. The IP indication direction is the positive direction of the current, OFS is the zero adjustment, and GIN is the output regulation;
- 6. The temperature of the primary conductor shall not exceed 105°C;
- 7. Incorrect wiring may cause damage to the sensor.

www.szsocan.com